

IVIS Spectrum: Advanced Small Animal Imaging of Fluorescent and Bioluminescent Probes

Brad Taylor, Ph.D. Advanced I maging Training Manager

What Will Be Covered?

- IVIS Spectrum features
- New features of Living Image 4.0
- Comparison of Epi and Transillumination
- Normalized transillumination imaging
- Spectral Unmixing
- 3D Reconstructions of bioluminescence (DLIT) and fluorescence (FLIT)
- Well plate quantitation of 3D sources

- High sensitivity CCD for bioluminescence or fluorescence imaging
- High throughput with 23 cm field of view

Caliper

- High resolution (to 20 microns) with 3.9 cm field of view
- 28 filters, wavelength ranges from 490 850 nm
- Spectral unmixing using discrete bandpass filters
- Reflection (Epi) or transmission-mode fluorescence
- Single-view 3D surface topography from structured light
- 3D diffuse tomographic reconstructions for both bioluminescence and fluorescence
- Ideal for imaging multiple probes/reporters

Living Image[®] Software

- Controls all settings in the IVIS[®] system (fully computer controlled)
- Provides advanced cataloging and browsing tools
- Provides analysis tools for quantification
- Instrument settings are analogous to photography

in vitro

in vivo

• Images are acquired in a two step process

Imaging W	izard	2 🗙		L	ivi	ng I	mag	ge 4.0	
	Imaging Mode				er	Frien	dlv I r	terface	
	Bioluminescence Imaging	🔽 Spectral Unmixing Wizard	2						
Bioluminescence	Select this option for imaging bioluminesc	Choose the components to unmi	x		• Mizarda aggist in acture				
*	chemiluminescent reporters, such as firefl	Tips	• •	• wizarus assist in setup					
Fluorescence	click beetle luciferase, renilla, or bacterial l	Choose the number of components to unmix. Pick the signals first, then add the probe information to the ta you are unclear about the probe or it is not in the libr. "Unknown".	 Autoexposure assists in 						
	Fluorescence Imaging			acquisition					
	Select this option for imaging fluorescent dyes, or nanoparticles in the wavelength 450-850 nm Both epi-Illumination (illumir	Imaging Subject: Mouse	Desferonces		leqe				
	from above) and trans-illumination (from)	V Tissue Autofluorescence	Preferences	A constant of	-	200.121.00	1		
	modes are available.	Food Signal	General User		Theme	Optical Properties			
	Cancel	Probe Information 1 dTomato 2 XLCF680	Exposure Time	escent Auto Expo -Second Pre Binning	sure Prefer ference -	ences - Third Preference F/Stop	- Target Count(Mir Luminescent: Epi-fluorescent; Trans-fluorescent	1imum) 3000 ♥ 6000 ♥ 10000 ♥	
		Match Probe Labe Number of compo Sack Fin	Range Values -Exp. Time (sec) Min: 0.5 Max: 60	Binnin 0 💙 Min: 2 Max:	9 1 16	F/Stop Min; Max:	1 V 8 V	estore Defaults	
							Cancel	Apply	

Apply

Camera and Lens Settings are Analogous to Those Used in Standard Photography

D

 Field of View (FOV) is dependent on the distance from the lens to the sample

Caliper

- Light collected is proportional to how long the shutter is open (exposure time)
- Aperture (f/stop) controls the amount of light collected
- Digital pixel binning possible with CCD - for further increase in sensitivity

Setting Sensitivity – Luminescent Signal Level

- The IVIS[®] CCD camera has a <u>raw</u> signal range of 0 to 65535 Analog to Digital Counts (2¹⁶).
- Adjust camera settings to obtain a signal level of 600 to 60,000 counts.
- Settings that control signal level are:
 - Exposure time
 - Binning (CCD Resolution)
 - f/stop (Aperture)
- Instrument is calibrated to automatically compensate for changes in sensitivity settings

Living Image Control Panel

Controls Sensitivity

🚺 IVIS Acqu	isition	Control	Par	et						
Imaging Mode	Exposure Time	e Binning		F/Sto)p	Excitation F	ilter	Emission Fil	ter	
📃 🗹 Luminescent	1.00 🗘 sec	Mediun	· *	1,	v	Block		Open	×	
E Fluorescent	-									
🚺 🗹 Photograph	Auto 🚍	Mediun	(- ~	8	Y					
Structure	-	-								
🗹 Overlay 🕴	🗌 Lights 💌	Alignment Grid	k							
Field of View: C	W.		Sys	tem S	itatu	s		_		
Service 12,9 cm Idle Acquire										
Subject height: 1.50 😂 cm										
Focus: use subject	t height 🔛	Temperatur	e:			Locked		Ini	tialize	

- Signal level is directly proportional to exposure time
- Shorter exposure time improves throughput

(Recommended min exposure time > 0.5 secs)

 Longer exposure time increases signal (Recommended max exposure time < 5 mins)

Exposure Time

Software – Acquisition

- f/stop controls the amount of light received by the CCD
- f/1 is wide open, maximum light collection - default for luminescent
- f/8 is smallest aperture, best resolution
 default for photo
- Changing f/stop changes counts by a factor of 4

f/1

f/stop (lens aperture)

in vivo

in vitro

Binning refers to the grouping of pixels into a larger super-pixel

Changing binning settings changes counts by a factor of four

- Large Binning (16) Higher Sensitivity/ Lower Resolution
- Medium Binning (8)
- Small Binning (4) Higher Resolution / Lower Sensitivity

Pixel Binning (CCD Resolution)

maging Mode	Exposure	Time	Binning	F/Sto	PP E	Excitation	r Filter	Emission	Filter	
 ✓ Luminescer Fluorescen ✓ Photograph Structure 	it 1.00 🗢 t 1 Auto	sec 👔	Medium Large Medium Small	8	~	Block-		Open		
Verlay	Lights	🗹 Aligr	nment Grid							
Overlay Field of View: C Service 12	Lights	Aligr	nment Grid S	ystem 9	status	ġ.	=		Acquire	6
Overlay ield of View: C Service 12 Jbject height: 1,	9 c	M Aligr	rment Grid S	ystem 9	itatus		=[» Se	Acquire	Setup

Software – Acquisition

Calibrated Physical Units

- Living Image[®] automatically compensates for device settings: Exposure time, f/stop, Binning, and Field of View.
- Calibrated units are Photons per Second, representing the flux radiating omni-directionally from a user defined region.

Calibrated Physical Units vs Raw Signal - Example

Raw Signal (*Counts*)

Exp time: 60 sec 60 sec 60 sec 60 sec 30 sec 30 sec **Binning:** small small small small medium medium Day: 1 2 3 5 6 4 1600 Peak Counts 1200 800 400

in vivo

Calibrated Physical Units vs Raw Signal- Example

Calibrated Signal

(Photons per second)

Exp time:	30 sec	30 sec	60 sec	60 sec	60 se	ec 60 sec	
Binning:	small	small	small	small	medium	medium	
Day:	1	2	3	4	5	6	
Radiance: <i>Photons</i> per second						_	

in vivo

Software - Analysis

Live cells

ATP and O_2 –

+

Imaging Basics Reporter Molecules

Genetic Marker

Label Cells

Label Bacteria

Label Proteins

15

in vitro

Dual Reporter: Bacterial luc and GFAP Brain Imaging From Mice with Pneumococcal Meningitis

Bacterial luc ~ Open filter

Firefly luc ~ 620 nm

Kadurugamuwa et al., Infection and Immunity, 2005

Tumor Imaging with Bioluminescence and Fluorescent HER2 Affibody

#7 #9 #10 #11 #12 imaging of SKOV3-luc

Images were taken after i.p. injection luciferin.

Fluorescent imaging of HER2 affibody labeled with XenoFluor 680

Bioluminescent

tumor cells

Images were taken at 3 hours after i.v. injection of the HER2/XF680 affibody probe

Challenge of In Vivo Optical Imaging

- Photons are absorbed and scattered in tissue
- Surface signal depends on source depth
- Tissue is both autoluminescent and autofluorescent
- Autofluorescence levels are much higher than autoluminescence

700 -600 -500 -400 -300 -200 -100 -

Sensitivity is a function of Signal to Noise

Luminescent Sources

Signal brightness generally lower than fluorescent sources

Higher sensitivity due to low level noise: both instrument and animal autoluminescence

Fluorescence Sources:

Signals generally brighter than luminescent sources

Lower sensitivity due to higher noise: instrument background and autofluorescence

Improvements to Signal to Noise Ratio

Adaptive FL Background Subtraction: Software tool to reduce instrument background

Spectral Unmixing: Extracts fluorescent signal from autofluorescence

Emission Spectra of Common Luciferases

Emission Spectra of Common Fluorophores

Autofluorescence Images of Control Mice

IVIS Spectrum CCD, TEcooled to -90C Emission 10 excitation filters filter wheel 100 Lens assembly Excitation 80 Transmission % filter wheel 60 Scanning 40 laser 20 Optical switch 400 440 480 520 560 600 640 680 720 760 Wavelength (nm) Heated Transillumination 18 emission filters sample Fiber bundle **Emission Filters** 100 stage 90 80 transmission(%) 70 60 50 40 30 20 10 0 500 550 600 650 700 750 800 850 wavelength(nm) in vivo in vitro

Caliper

IVIS Spectrum Epi-illumination

Counts

Fluorescent Calibrated Units: Radiant Efficiency

Units of 'Radiant Efficiency' compensates for non-uniform excitation light pattern

GFP Well Plate Uncorrected

VS.

GFP Well Plate Corrected

Fluorescent Calibrated Units: Radiant Efficiency

IVIS Spectrum Transillumination

Transillumination Sequence Acquisition

Normalized Transmission Fluorescence

Raster Scanning Capabilities

Faster

Shutter remains open as exciter moves from point to point

- Result is one image
- Can not be utilized for FLIT analysis

Transillumination Optimal for Deep Tissue Sources

Caliper

sig/ bkg=90.51 sig/ bkg=1.43Ex 640 nm Em 700 nm

Transillumination

XenoFluor 680: Pillow implanted medial to left kidney, 1x10¹⁵ molecules

Intense source allows for more efficient excitation

- Autofluorescence lower
- Optical properties of reporter determine depth penetration

Reflection-Mode Imaging Reveals Shallow Signals Better than Transillumination

Epi Illumination

Ex 640 nm Em 700 nm

the second secon

in vitro

in vivo

Transillumination

 XenoFluor 680:
 Subcutaneously injected number of dye molecules shown

• Optical properties of reporter determine detectability at depth

 Limits of detectability around 8mm with optimal reporter

High throughput

34

- Emission or excitation scan
- Quantitative and qualitative results

What is Spectral Unmixing?

- Calculates concentrations of different fluorescent components
- Requires images acquired at multiple wavelengths to perform the spectral analysis

In vitro Spectral Unmixing Example: Dyes in a Dish

Top and bottom: XF680 and XF750 mixture: 1:1 Left middle: XF680 only Right middle: XF750 only 1 x10¹⁴ molecules per spot Ex640, Em700-820nm

Spectral Unmixing (Epi-illumination) XenoFluor 680/750

Raw Spectral Images

Subcutaneous injections of 10¹⁴ molecules of XenoFluor 680 (scruff)

Subcutaneous injection of 10¹⁴ molecules of XenoFluor 750 (lower dorsal region)

605nm excitation filter

Spectral Unmixing of DHE in Brain

Data compliments of Adrienne Scheck St. Joseph's Research Hospital, Phoenix, AZ

Image Overlay Capabilities

Bioluminescent Tumor

DHE

in vivo

Single View 3D Imaging

Bioluminescence (DLI T[™]):

- Obtain top surface topography using structured light
- Use luminescent images at several emission wavelengths
- Solve for source location and brightness (flux)

Fluorescence (FLIT):

- Obtain top surface topography using structured light
- Use fluorescent images from multiple trans illumination scans

Do I need DLIT/FLIT?

Dorsal View

- Do you need to compare two foci directly?
- Determine the best view and stick with it
- Consistency is key

Ventral View

29 days after i.c. injection of 2x10⁶ PC3M cells

Spectral measurements provide information on depth of source

In-depth Knowledge of Luciferin Kinetics Essential for 3D Reconstruction

1x10⁶ U87MG^{luc} cells subQ

Burgos et al., 2003

3D Requires Multiple Spectral Measurements

Consistent light output assumed

Burgos et al., 2003

Surface Topography / Diffuse Tomography (DLIT[™])

- Acquire a sequence of photographic and bioluminescent images at multiple wavelengths. Acquire one structured light image in sequence.
- Use structured light images to reconstruct surface mesh of mouse
- From surface radiance images, determine the photon density just inside the surface on every element of the surface mesh
- Divide the volume of the object into a grid of cubic voxels
- Define and solve a system of linear equations that relate the source strength of each voxel to the radiance at each surface element using diffusion theory with approximate boundary conditions
- Display resulting source strengths and locations

Surface Topography Reconstruction

Structured Light Image provides single-view surface topography (top surface)

Structured Light Image

Height Map

DLIT[™] Reconstruction

- Select tissue properties
- Select source spectrum

Threshold your data

in vivo

PC3M Intracardiac Metastatic Model

29 days after i.c. injection of 2x10⁶ cells

$$\lambda$$
 = 580, 600, 620 nm

CI	hest Cavity	Peritoneal Cavity		
Depth [mm]	Flux [photons/sec]	Depth [mm]	Flux [photons/sec]	
2.1	2.43×10 ⁸	3.2	1.44×10 ⁸	

in vitro <

Automatic Mouse Atlas Registration in LI4.0

Unregistered

Coregistered

Coregistration with CT or MRI

Multi-Wavelength 3D Reconstruction of B16F10 Melanoma Metastases Model

Dorsal View

- 5x10⁵ cells, injected IV
- Imaged on day 17
- Five filters from 560-640 nm

Tissue Section Analysis of Source Depth

Determine best orientation – can reconstruct dorsal, ventral, left and right saggital

Transillumination Combined with FLIT can localize both shallow and deep tumors in 3D

Cetuximab (Erbitux) inhaled in right lung

XenoLight 750 Herceptin Conjugate

Ex: 745nm Em: 800 nm

50 μg XLCF750 dye Herceptin conjugate Injected IV on Day 20 Imaged on Day 22, T=48 hour

In vivo dual modality tomography

Fluorescence data

Ex: 745nm Em: 800 nm

Bioluminescence Data

50 μg XF750 dye Herceptin conjugate Injected IV on Day 20 Imaged on Day 22, T=48 hour 5×10⁵ PC3M-luc cells Injected orthotopically in the prostate Imaged on Day 22

in vitro <

In vivo dual modality tomography

Fluorescence Imaging Tomography - FLIT

Bioluminescence Imaging Tomography - DLIT

In vivo Dual Modality Tomography

• Copy and paste voxels from FLIT or DLIT reconstructions

in vitro 🧹 🧹

Utilize Well Plate Quantification to Determine Cell Number or pMol of Reporter

- Dilute your cells or dye and image
- Select Well Plate Quantification from Tools menu

Living Image® 4.0	🖉 Well Plate Quantification Window	V DLIT 3D Reconstruction
File Edit View Tools Acquisition Window Help Image Well Plate Quantification s: Radiance (Photons) Apply to all Image Colorize Image Math Image Math Units: Radiance (Photons) Veriage Image Math	For Click: TT20091124102408_005 Click: TT20091124102408_005 ## Well Plate Type * Measurement: Sample Wells: C1::C6 Image: Set in the set in	Analyze Properties Results Tissue Properties: Muscle V Source Spectrum: Firefly V Plot: Tissue Properties V
Image: state sta	Well Plate Quantification Plots Results Set position and enter dilution values in cells I 2 3 4 5 6 Bkg Bkg Bkg Bkg Bkg Bkg Bkg Bkg C 20000000 1000000 500000 250000 62500 0 D - - Enter cell number or concentration per well - Save as a library - Save as a library -	T1-luc None T1-luc U U U U U U U U U U U U U U U U U U U

Choose library

when reconstructing

Utilize Well Plate Quantification to Determine Cell Number or pMol of Reporter

For an In Depth Study

IVIS Software Manual

IVIS University Web page www.caliperls.com/products/opticalimaging/ivis-university.php

IVIS[®] University

Thank you for enrolling in the Caliper IVIS University!

Click on the links below to access the IVIS Blog, Tech-Notes, New Protocols, Feature Updates, and more.

IVIS Blog

Click here to access the IVIS Blog site

Tech-Notes

Acquisition of High Resolution Images

Determine Areas of Saturation

- Diffuse Light Imaging Tomography (DLIT)
- DLIT Sequence Acquisition
- Drawing ROIs

Filter recommendations for common fluorescent proteins, dyes and Quantum Dots using the IVIS Lumina and IVIS Kinetic equipped with the standard filter set

Filter recommendations for common fluorescent proteins, dyes and Quantum Dots using the IVIS Spectrum and Lumina II or IVIS Kinetic equipped with spectral unmixing filters

Software

in vitro

IVIS Bioware and Reagents

IVIS XenoLight

Suzen O'Coin (508) 497-6489 suzen.ocoin@caliperls.com

✓ NIR Fluorescent Reagents 680, 750, 770nm Protein Labeling Kits

D-Luciferin Substrate
 RediJect D-Luciferin

✓ RediJect D-Luciferin Ultra

Summary

- IVIS Spectrum is a flexible and sensitive instrument for both bioluminescent and fluorescent imaging
- 28 filters cover all bioluminescent and fluorescent probes/reporters of interest for *in vivo* imaging
- Transillumination and spectral unmixing tools improve sensitivity by reducing autofluorescence
- Single view 3D reconstruction tools for bioluminescent and fluorescent imaging
- Tools for co-registration with other imaging modalities available

Thanks for your attention!!

Technical Support (508) 435-9761 Tech.Support@CaliperLS.com

Brad Taylor, Ph.D. (630) 857-0556 Brad.Taylor@CaliperLS.com Alexandra De Lille, Ph.D. (970) 214-8758 Alexandra.DeLille@caliperls.com

🕥 in vivo